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ABSTRACT

This paper describes recent results obtained at MIT

on the experimental and theoretical modelling of

aerodynamic broadband noise generated by a downwind

rotor horizontal axis wind turbine. The aerodynamic

broadband noise generated by the wind turbine rotor

is attributed to the interaction of ingested turbu-

lence with the rotor blades. The turbulence was

generated in the MIT anechoic wind tunnel facility

with the aid of blplanar grids of various sizes. The

spectra and the intensity of the aerodynamic broad-

band noise have been studied as a function of param-

eters which characterize the turbulence and of wind

turbine performance parameters. Specifically, the

longitudinal integral scale of turbulence, the size

scale of turbulence, the number of turbine blades,

and free stream velocity were varied. Simultaneous

measurements of acoustic and turbulence signals were

made. The sound pressure level was found to vary

directly with the integral scale of the ingested

turbulence but not with its intensity level. A theo-

retical model based on unsteady aerodynamics is

proposed.

NOMENCLATURE

B Number of rotor blades

b Rotor blade span

c Rotor blade chord

c o Ambient speed of sound

Dr(_,f ) Power spectral density of the dipole
radiation

f Frequency

k x x component of turbulent wavenumber
vector

m Rotational harmonic

M o Rotational Mach number at radial

position R o

0o Ambient density

R o Radial location of the effective
velocity

r Radial position

<S (x,t)> Radiation spectra

Uo pp Velocity
x Vector coordinate

A Integral scale of turbulence

Af Longitudinal integral scale of
turbulence

Azimuthal angle

Rotational speed

I. INTRODUCTION

The potential advantages derived from wind power as

a source of world energy needs are not independent

of their environmental impact. The essential factor

in such an environment impact is the negative aspects

associated with the aerodynamic noise generated by

*Presented at the DOE/NASA Wind Turbine Technology

Workshop, May 8-10, 1984 in Cleveland, Ohio.
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wind turblnes 1'2'3'4 The aerodynamic noise generated

by wind loading on the blades of wind turbine may be

classified as: (I) Gutin noise resulting from Doppler

modulation of the steady blade loads, (2) blade tower

wake interaction noise generated by continued blade

passage through the downwind wake of the wind turbine

support tower, and (3) broadband noise due to blade

interaction with incident turbulence. Previous

research at MIT has addressed Gutln noise and blade

tower wake interaction noise from a theoretical and

experimental perspective 3'4. This paper presents

results of our investigation of the effects of turbu-

lence on wind turbine broadband noise.

II. EXPERIMENTAL APPARATUS

The M!T anechoic wind tunnel facility was used to

investigate the effects of controlled free-stream

turbulence on the broadband noise generated by a

scaled model wind turbine. Turbulence of varying

intensity and scale was generated in the wind tunnel

test section by inserting biplanar grids of different

sizes in the tunnel contraction section. The experi-

mental apparatus used in obtaining and analyzing both

turbulence and acoustic data is described.

II.A. THE M.I.T. ANECHOIC TUNNEL

The wind tunnel has a 1.52x2.29-m inlet open-jet test

section which is enclosed in a 3.65x3.65xY.3-m

anechoic chamber. The sides of the chamber were

covered with Cremer blocks and the floor of the

chamber was covered with 15-cm-thick polyurethene

foam. The anechoic properties of the tunnel were

measured and the acoustic cutoff frequency above which

free-field conditions prevail was found to be 160 Hz.

The effects of the shear layer of the open jet on

refraction and scattering of acoustic waves were

studied by using aeolian tones as sound source and

were found to be insignificant under the present test

conditions. The details of the aerodynamic and

acoustic calibrations of the wind tunnel facility are

described in Harris and Lee. 5

ll.B. WIND TURBINE MODEL

Experiments were conducted on a 1/53 scale model of

the NASA-DOE MOD-I wind turbine. NACA 0012 model rotor

blades were used. The blades have a 5.08 cm chord,

-8 ° linear twist, and a radius of 59.6 cm.

II.C. TURBULENCE GENERATION

The grids employed in this study were designed based
on the data of Baines and Peterson. 6 The grids were

biplanar consisting of bars of 1.91 cm with a mesh

size of 15 cm and bars of 8.9 cm with a mesh size of

50.8 cm. The grid solidity were 0.23 and 0.32 respec-

tively. The grid Reynolds number based on the lowest

tunnel velocity were 9x104 and 3x105, respectively.
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The longitudinal and vertical integral scales Af and

Ag of the grid generated turbulence were determined
near the axis of rotor. For convenience, we

estimated Af from the Eularian integral time scale

T e. The values of T e were determined from the extra-

polated zero intercept of the power spectra of longi-

tudinal and vertical velocities. The length scales,

then are given by

Af = UoTef; Ag = UoTeg (i)

The measured longitudinal and vertical integral

scales of grid generated turbulence were observed to

be independent of free-stream velocity. In absence

of grids, the Eularian time scales were very large

and fluctuating. This resulted in large length

scales that vary considerably with free-stream

velocity, but do not follow any definite pattern.

The biplanar grids used to generate the controlled

turbulence were located 2.08 m from the plane of the

rotor. This corresponds to approximately 15 mesh

lengths for the small grid and 4.6 mesh lengths for

the larger grid. The controlled turbulence is

assumed isotropic at the rotor plane. Characteristic

turbulence data are given in Table i.

ll.D. INSTRUMENTATION

Data flow for all the experiments was from microphones

and hot wire sensors to a magnetic tape and later

from the magnetic tape to a spectrum analyzer.

The acoustic measurements were made on axis and in

the plane of the rotor as shown in Fig. I. Acoustic

signals were measured using two I/2 inch B&K micro-

phones type 4133. Wind screens were used on both

microphones. The on axis microphone was amplified

with a B&K 2107 frequency analyzer, while the off

axis microphone was amplified by a B&K 2604 micro-

phone analyzer. The microphones were calibrated

using a B&K piston phone type 4220.

The fluctuating velocity signals were measured with

a DISA 55H24 S-type hot wire sensor. The probe was

calibrated over the anticipated test velocities and

the responses of both wires were found to be roughly

linear. The probe was placed at 91.6% span 12 cm

upstream of the blade of the rotor. DISA 55D05

constant temperature anemometers were used in conjunc-

tion with a DISA 55D15 linearlzer. Both signals were

monitored constantly with two (true) rms voltmeters

type HP 3400 A. The gain control on one of the

linearlzers was used to achieve uniform sensitivity

of both wires.

The X-wire signals were fed into a home-built sum and

difference unit to yield the longitudinal and vertical

components of the velocity. The signal from the

summing unit was passed through a Krohn Hite model

3340 filter to eliminate the offset voltage inherent

in the linearizer output signal. Acoustic, turbu-

lence, rpm and flow speed measurements were made

simultaneously. A schematic of instrumentation used

in the acquisition of turbulence, acoustic, and rpm

data is shown in Fig. 2.

subsequently analyzed with a Nicolet 660B dual channel

FFT analyzer and plotted on a Tektronix 4662 digital

plotter. All of the data was analyzed by taking the

averages of 50 time windows of the taped signal.

III. EXPERIMENTAL RESULTS

To investigate the effects of ingested turbulence

on the emitted broadband noise, the turbine blade

pitch, flow speed, and number of blades were fixed at

15 °, i0.i m/sec and 2 respectively while the control-

led turbulence was varied. Typical results are shown

in Figs. 3 and 4. Comparing Figs. 3 and 4 we observe

that an increase in length scales along with a

decrease in turbulence intensity, has a significant

effect on the broadband noise spectrum. The smaller

scale and higher intensity turbulence dominates the

spectrum at the lower frequencies while the larger

scale and lower intensity turbulence dominates at the

higher frequencies. The longer length eddies tend

to produce a more pronounced blade-to-blade correla-

tion effect and leads to more positive and negative

interference between acoustic waves generated by the

wind turbine blades.

Figures 5 and 6 show the influence of free stream

velocity on the radiated broadband noise. The

observed increase in sound pressure level with

increasing forward speed is attributed to the

corresponding increase in the rms value of the
turbulence in the tunnel with increased forward speed.

Note the difference in rpm between Figs. 5 and 6.

This difference is a result of both cases correspond-

ing to a fixed blade pitch of 15 °.

The relatively negligible effect of number of wind

turbine rotor blades on the generated broadband noise

is shown in Figs. 7 and 8. The main difference being

an increase width of peak centered at approximately

3,000 Hz with increasing number of blades.

The off axis microphone verified the above results.

The off axis microphone sound pressure level was

always less than that of the on axis microphone

confirming the dipole nature of the broadband noise.

A typical comparison between on axis and off axis

microphone readings is shown in Figs. 7 and 9.

IV. BROADBAND NOISE THEORY

When there is no significant blade-to-blade correla-
tion Aravamudan and Harris 7 have shown that the

spectrum of low-frequency broadband noise may be

expressed as

f2sin2 _

<Spp(X,f)> = 2UoC3r2Oo(l+bf/Uo)

n= --co

Dr(f-n_)J2n [ fR°sin_co I

where

(2)

The measured acoustic, turbulence, and rpm signals

were recorded on magnetic tape with an Ampex FRI300

14 channel recorder. The recorded signals were
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_202U_ b2c2(0"4548) 2 4 f=
w Af dko yDr (f) = B2

[(f/Uo) 2+ky]2 (j2o{Mo2C/_2)[ (f/Uo)2+k2y]i/2-_+jl i2_(M_c/B2)[ (f/Uo)2+k2y]i/2})

{i+(2_2c/_ 2)[(f/Uo)2+k2y]I/2}{l + 1.793%2f[(f/Uo)2+k2]y_}7/3

(3)

The two-dimensional model of rotor blade-turbulence

interaction developed above is equivalent to exploit-

ing the effective radius approach at 80% span, to

assuming chordwise and spanwise compactness, and to

a neglect of retarded time considerations associated

with the sweep of the skewed gusts in the spanwise

direction. Our objective in developing this model

is to correlate the measured data. Additional experi-

ments and calculations are in progress with a goal of

correlating theory and experiment.

V. CONCLUSIONS

Measurements in the M.I.T. anechoic wind tunnel of

broadband noise generated by a 1/53 scale model of

the NASA-DOE MOD-I wind turbine have been made. The

experiments and related analytical development

described in this paper are concerned with the effects

of turbulence on broadband noise generated by a model

wind turbine. Our measurements suggest the following:

1. The smaller scale and higher intensity turbulence

dominates the broadband noise spectrum at the

lower frequencies while the larger scale and

lower intensity turbulence dominates at the

higher frequencies.

2. The sound pressure level of the broadband noise

spectrum increases with increasing forward speed

due to the corresponding increase in the rms

value of the turbulence in the tunnel.

3. Increasing the number of blades from two to

three has a negligible effect on the sound

pressure level of the broadband noise spectrum.

4. Off-axis microphone measurements confirm the

dipole nature of the broadband noise generated

by the model wind turbine.

5° A broadband noise model has been developed and

is to be compared with experimental results.
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Table i :

Characteristics of Turbulence U
O

" i0.i m/sec

Longitudinal Scale (cm)

Vertical Scale (cm)

Ratio of Av/A I

Intensity

Solidity

Grid Reynolds Number

Grid #0

(free stream)

34.4

20.4

0.59

1.7%

0

Grid #I

i.92x15.38cm

9.6

5.8

0.61

6.25%

0.23

9xlO 4

Grid #2

8.97x51.28cm

14.6

9.3

0.64

11%

0.32

3x105

Uo _1.32 m--_

? io"1.32 m

n
T

.5m

axis microphone

axis microphone

FIGURE i - POSITION OF MICROPHONES
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MICROPHONE
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RPM
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RECO_RDER

SUM B

DIFE

UNIT

FILTER l-

FIGURE 2 - SCHEMATIC OF INSTRUMENTATION
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6O

4O
0

GRID #1 960 RPM 10.1m/sec

ON AXIS MICROPHONE

I t [ I I 1 ! I

2 4 6 8 10 (Hz

FIGURE 3 - SOUND PRESSURE LEVEL WITH GRID #i

100

(dBA)

6O

400

GRID#O 1040RPM 10.1 m/sec

ON AXIS MICROPHONE

I I I I [ I I I I

2 4 6 8 IOKHz

FIGURE 4 - SOUND PRESSURE LEVEL WITH NO GRID
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FIGURE 5 - EFFECT OF FREE STREAM VELOCITY ON SOUND PRESSL_RE LEVEL, U = I0.i m/s
o

oof
(dBA)

6O

GRID#2 850RPM 13.4 m/sec

ON AXIS MICROPHONE

400 I J , I I , , f2 4 6 8 IOKHz

FIGURE - 6 EFFECT OF FREE STREAM VELOCITY ON SOUND PRESSURE LEVEL, U = 13.4 m/s
o
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(dBA)
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GRID#O 2BLADES
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400 i i , , i i , , ,4 8 12 16 20KHz

FIGURE 7 - EFFECT OF NUMBER OF BLADES ON SOUND PRESSURE LEVEL, B = 2

100

80

t 1080 RPM 10.1 m/secGRID #0 3 BLADES
ON AXIS MICROPHONE

(dBA)

60

400
I I I I I I I I I

4 8 12 16 20 KHz

FIGURE 8 - EFFECT OF NUMBER OF BLADES ON SOUND PRESSURE LEVEL, B = 3
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100

8O

(dBA)

1040 RPM 10.1 m/sec
GRID#O 2BLADES
OFF AXIS MICROPHONE

400 4 8 12 16 20 KHz

FIGURE 9 - SOUND PRESSURE LEVEL, NO GRID, B = 2, OFF AXIS MICROPHONES
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